Дегтярев А.П.

ТЕОРИЯ И ПРАКТИКА СПЕЛЕОТОПОСЪЕМКИ.


 Конспект лекций, прочитанных 16 и 23 ноября 2001 г. в одном из московских клубов.

    Зачем нужна топосъемка?
    1.Ориентирование в пещере и, особенно, в каменоломне.
    2.Схема навески. Планировать длину веревки, количество ушей, рапидов и т. д.
    3.Приоритет первопрохождения. Чтобы раз и навсегда прекратить споры о том, кто первым прошел такой-то участок пещеры (или всю пещеру) решили: кто оттопосъемил, тот и считается первопроходцем.
    4.Глубина пещеры. Поскольку борьба за самую глубокую пещеру мира не утихает, то вопрос, чья пещера глубже, можно выяснить только топосъемкой (есть еще гидронивелирование и барометрия, но они тоже привязываются к топе).
    5.Привязка к местности. Нанеся на карту местности нитки топосъемок известных на данном участке пещер, можно спрогнозировать место их разгрузки, оценить перспективу соединения пещер в единую систему, и наметить участки для поиска новых пещер.
    6.Для каменоломен. Опять же, перспективы соединения с соседними системами. Плюс к этому, по конфигурации штреков можно обнаружить потеряные (забутованные, заваленные, замытые) части систем.

     Каковы особенности подземной топографии?
    а).Под землей не применимы такие основные методы поверхностной геодезии, как треангуляция и аэрофотосъемка.
    б).Невозможность применения точных оптических приборов, таких, как теодолит, нивелир. Они применяются маркшейдерами на рудниках, но в суровых условиях природных пещер это невозможно. В старых каменоломнях применение оптики невозможно из-за глыбовых завалов, да и не нужно, так как высокий класс точности съемки не требуется. Высокий класс требуется для проходки и соединения идущих навстречу штреков. Мы же обходимся горным компасом, рулеткой и эклиметром.
    в).Как уже отмечалось, суровые условия работы. Вода, льющая в том числе и сверху, многие участки съемок представляют из себя колодцы, то есть работать приходится на веревке. Лед, снег, плохая освещенность.
    г). Если задача геодезиста состоит в том, чтобы получить проекцию рельефа (то есть двумерного объекта) на горизонтальную плоскость, то мы имеем дело уже с трехмерным объектом, имеющим трубообразную, часто ветвящуюся и вновь замыкающуюся на себя форму. Если каменоломню или горизонтальную природку можно представить на одной плоскости, то многоэтажный рудник или вертикалку мы представляем в двух (или более) изображениях: плане и разрезе-развертке.
    д).Невозможность непосредственного измерения многих углов и расстояний. Вися, к примеру, на веревке, невозможно промерить расстояние до дальних стенок. Как правило, недоступен и потолок. Поэтому, многие расстояния оцениваются на глаз или косвенными методами.
    е).Ограниченность во времени. Длительность работ в природной пещере обычно не превышает нескольких дней. Значит работы ориентированы на скорость за счет ухудшения качества. Проверить отстроенную съемку удастся в лучшем случае в следующем сезоне, а то и вообще никогда. Все допущенные пробелы и ошибки чаще всего остаются неисправленными.
    ж).Следствие всего вышесказанного: очень низкий класс точности полученных результатов. Лучшая топосъемка будет принадлежать по точности к полуинструментальным съемкам. Но для целей спелеологии этого вполне достаточно.

     Как это делается?
    Идея очень простая. У нас есть две точки (мы их далее будем называть пикетами). С помощью рулетки измеряем расстояние между ними. Прикладывая компас к натянутой рулетке, замеряем азимут с одной точки на другую. Прикладывая к рулетке же эклиметр (прибор для измерения вертикальных углов - отвес и шкала в градусах), получаем вертикальный угол. Для горизонтальных каменоломен достаточно расстояния и азимута. Итак, мы получили расстояние между точками L, горизонтальный (a) и вертикальный (b) углы. Если мы примем первую точку за нулевую (x=0, y=0, z=0), а ось "Y" направим на магнитный север, то мы легко получим координаты второй точки. Для двумерного случая каменоломен:
     X=Lsin(a)
     Y=Lcos(a)
     Далее измеряем те же величины между второй и третьей точками, а координаты третьей точки получаем прибавлением к координатам второй точки вновь вычисленных X и Y. Таким образом мы получаем цепочку точек с узвестными координатами. Отстроив их на миллиметровке, мы получим "ход", который описывает нашу пещеру. А если мы в каждой точке измеряли расстояние от пикета до правой и левой стенок, то мы легко обрисуем наш ход и получим изображение еще и ширины штреков.
    Для трехмерного случая природных пещер все несколько иначе. Казалось бы, мы должны получить трехмерные координаты точек:
     X=Lsin(a)cos(b)
     Y=Lcos(a)cos(b)
     Z=Lsin(b)
     Для плана пещеры (проекция на плоскость X-Y) мы берем первые две величины: X и Y. Проекция L на горизонтальную плоскость называется проложением. А проекция L на вертикальную ось z - превышением.
     Но теперь мы хотим построить разрез-развертку. Что это такое?
     !!!Запомните!!!. Разрез-развертка не есть сечение пещеры вертикальной плоскостью. И это не есть проекция на какие-либо вертикальные плоскости. А это есть разрез пещеры вертикальной поверхностью, изгибающейся вместе с изгибами пещеры. Пример разреза-развертки можно посмотреть здесь.
    Поэтому, для развертки мы вычисляем две величины:
     L'=Lcos(b)
     Z =Lsin(b)
     Как видим, здесь нет ни Х, ни Y, вместо них вычисляется некая L', поскольку горизонтальное направление поверхности сечения постоянно меняется.
    Если пещера ветвится, то на плане это отражается ясно и понятно. Но на разрезе-развертке ситуация неоднозначна. Обычно две разветвившиеся развертки рисуют на одной плоскости. Одну из ветвей можно пустить вправо, другую влево, можно в одну сторону (если они вновь соединяются). Это уже вопрос удобства. Так же как в каменоломнях мы отмечали ширину штрека, так же и в природных пещерах. Плюс к этому, мы оцениваем расстояния вверх и вниз. Обычно пишут. Вверх: "5м" или, если собственно потолок скрыт за уступами, то пишут ">10м" и т.п. Величина "вниз" тоже не всегда равна нулю: если мы стоим в распоре над меандром. Дно тоже далеко не всегда видно.

     Как вести вычисления? Лучше всего компьютерными средствами. Сейчас существует множество программ для построения топосъемок, их можно бесплатно скачать из интернета. Они не только вычисляют координаты точек и представляют их в нарисованном виде, но и могут вычислять и разбрасывать ошибки в замкнутых контурах, обрисовывать стенки. Самые навороченные рисуют объемные изображения. Надо только помнить, что конечный продукт должен быть в gif или jpg формате и надо уметь переводить промежуточный продукт к этим форматам. Если же не охота вникать в эти программы, то их легко заменит любой редактор типа Excel. Он, правда, не будет разбрасывать невязки и обрисовывать стенки. Но все это можно легко сделать вручную. Вычисления в Excel элементарны, поэтому на этом вопросе останавливаться не будем.

     А можно ли не вычислять координаты? Можно. Если, к примеру, надо нарисовать отснятое прямо на месте в полевых условиях, то можно на миллиметровке откладывать транспортиром азимуты, а линейкой или циркулем - расстояния. Значения синусов выбиты на обратной стороне горного компаса. Если нет транспортира, то можно использовать компас, сориентировав лист миллиметровки по линии север-юг. Но результат будет гораздо менее точен, по сравнению с вычислением координат. Главная проблема в том, что при построении транспортиром ошибка накапливается от точки к точке, а при вычислении координат нет (исходим из того, что компьютер не ошибается и цифры мы набиваем без ошибок). Кроме того, результат сильно зависит от масштаба построения и от аккуратности чертежника. Например, мы строим изображение в масштабе 1:500. Если, откладывая расстояния циркулем мы ошибемся на полмиллиметра, то это будет сразу ошибка в 25см. на местности. Все это легко проверить: постройте один и тот же участок сперва транспортиром, а потом по координатам. Результаты могут отличаться довольно сильно.
    !!!Запомните!!! Транспортиром строятся только черновые наброски, но не окончательный вариант топосъемки. Но я бы советовал даже в полевых условиях строить по координатам. Для этого надо иметь с собой калькулятор и таблицы синусов и косинусов.

     Каковы правила ведения топосъемки?
    Работа происходит всегда в паре. Один человек (помощник) держит нулевой конец рулетки и ставит бумажки или камешки в качестве пикетов. Второй (сам топосъемщик) держит другой конец рулетки и отсчитывает по ней расстояние. Он же измеряет азимут и вертикальный угол и он же ведет записи и зарисовки.
    !!!Запомните!!! 1.В процессе работы помощник и топосъемщик не должны менятся ролями. Топосъемка несколькими парами не есть хорошо. Такие съемки почти всегда отличаются низким качеством.
    2.Тот, кто вел записи, тот и строит потом карту. Как бы аккуратно ни велись записи, посторонний человек в них не разберется или разберется, но допустит ошибки.
    3.Строить карту надо не позже, чем через три дня после съемки. В первые дни человек еще может вспомнить как выглядело то, что он снимал. Потом все стирается из памяти и гораздо труднее выявить ошибки.

     Какие компаса применяются при топосъемке?
    Применяется горный компас ГК-2 или его аналоги. В чем его отличие от обычного туристского компаса?
    1.Прямоугольная форма, на одной из сторон высечена сантиметровая шкала. Круглая форма категорически не подходит, так как именно прямая боковая сторона прикладывается к рулетке.
    2.Цена деления - 1 градус. Компаса даже с ценой деления 2 градуса не годятся, так как точность съемки упадет сразу в два раза.
    3.Встроенный эклиметр. Он дает невысокую точность, но может использоваться при отсутствии отдельного эклиметра.
    4.Имеется винт для юстировки лимба (круговой шкалы с градусами).
    5.Сам лимб, в отличие от большинства туристских компасов, неподвижен. Этот факт также значительно влияет на точность отсчета.
    6.Шкала градусов идет против часовой стрелки, запад и восток обменяны местами. В туристских компасах шкала идет по часовой стрелке.
    7.В горных компасах отсутствуют визирные устройства. Пользоваться визирами при топосъемке запрещено, так как такой способ дает ошибку в азимуте до 10 градусов. Мы же должны получить ошибку менее 2 градусов. Теоретически, при цене деления в 1 градус мы можем получить максимальную среднюю точность в 0.5 градуса. На практике ошибка будет больше и это в большой степени зависит от аккуратности топосъемщика.
    !!!Запомните!!! На одном и том же участке, с одним и тем же набором инструментов при всех прочих равных условиях, разные люди будут систематически получать разную точность. Это называется "тщательность исполнения". Тщательность исполнения это индивидуальная особенность каждого конкретного съемщика.

     Как происходит отсчет азимута туристским компасом? Азимут есть угол между направлением на магнитный север и направлением на предмет, причем этот угол отсчитывается по часовой стрелке и может иметь значения от 0 до 360 градусов. Пусть предмет находится на востоке, а компас у нас направлен на север. Мы хотим померить азимут на предмет. Вращаем компас вправо, при этом стрелка сдвигается влево (она должна всегда показывать на север). Что показывает стрелка? 270 градусов. А восток это азимут 90. Значит, мы начинаем вращать лимб, пока не совместим северный конец стрелки и "0". Тогда визирный выступ остановится как раз напротив "90". Это и есть наш искомый азимут. Непонятно? Возьмите компас и проделайте это сами, тогда все будет ясно. Почему такой способ нас не устраивает? Каждый отсчет происходит с некоторой, пусть и небольшой ошибкой. Мы внесли ошибку, пока визировали. Потом нам надо было переместить голову вверх, чтобы взглянуть на лимб. Пока мы это делали, рука дернулась и ошибка возросла. Потом мы вращали лимб и добавили еще две ошибки - когда совмещали стрелку и "0" и когда брали отсчет по визирному выступу. Плюс к этому, поскольку лимб вращается, у него есть некоторый люфт. Это тоже добавляет ошибку. Результат: плачевный.
    А как берется азимут на горном компасе? Геологи люди умные. Поэтому они придумали гораздо более совершенную и более простую конструкцию. Мы прикладываем компас к натянутой рулетке. Той стороной, где "0" направив на предмет. При этом смотрим сразу сверху вниз на лимб, а не на предмет. Лимб не вращается, но зато шкала идет против часовой стрелки. Северный конец стрелки сразу показывает азимут. Таким образом, ошибки вносятся при прикладывании компаса к рулетке (их края должны быть строго параллельны) и при снятии отсчета. Все. Накаких манипуляций, никаких люфтов.

     А где взять горный компас? Едете на Измайловский вернисаж (м.Измайловский парк, далее идете за высотные здания гостиницы). Компаса там продаются за 300-350р. (янв.2002г).

     И как проверить его исправность?
     Что может быть неисправно в компасе?
    1.Может быть не отцентрирована иголка. Если один конец показывает "0", а другой "179" или "181" вместо "180", то иглу надо центрировать. Проверять, кстати, надо в двух перпендикулярных направлениях, еще проверить "90-270". Почему - понятно. У меня игла была мало того, что не центрирована, так еще и стрелка на ней плохо вращалась. Пришлось ее выдрать и вместо нее вклеить на эпоксидке обломок булавки.
    2.Линия "0-180" может быть не параллельна боковой стороне. Заметить на глаз ошибку даже в 2 градуса невозможно. Поэтому проверяем так. Кладем компас на лист миллиметровки и совмещаем боковую сторону компаса с одной из линий. Теперь очень аккуратно кладем сверху на компас линейку (лучше прозрачную) и совмещаем ее край точно с рисками "0" и "180". Если линейка не параллельна линиям на миллиметровке, то действуем юстировочным винтом, пока лимб не установится правильно.
    3.Иголка может плохо вращаться на игле. Как это узнать? Установим компас на столе в любом направлении. Допустим, стрелка показала "56". Возьмем железный предмет и, не трогая компаса, раскачаем стрелку. Пусть теперь она успокоится. Если после остановки стрелка показала все те же "56", то все ОК. Если "57" или "55", то попробуем и перед первым и перед вторым замерами постучать карандашом или ногтем по стеклу. Если показания отличаются более, чем на градус, надо менять иглу. Хорошим, но необязательным признаком является дрожание стрелки. Если дрожания нет, надо во время замеров слегка встряхивать компас или слегка стучать по стеклу ногтем.

     Что еще надо помнить?
    Ручка, которой вы пишете, не должна быть стальной. Посмотрите, что входит в ваше снаряжение. Если работаете в обвязке, проследите, есть ли у вас стальные карабины и т.д. Электрический ток тоже может влиять на стрелку. Если есть сомнительный предмет, то положите компас на землю и постарайтесь раскачать стрелку этим предметом. Если это удается, то удалите предмет.
    Совершенно невозможно работать компасом на письменном столе. Болты, гвозди, предметы в ящике стола - все влияет на стрелку.
    Магнитный север и географически север не совпадают. Вообще-то магнитный север находится в Антарктиде, а северная стрелка указывает на южный магнитный полюс, ведь N тянется к S. Логично? Ну так вот, магнитный север, который на самом деле южный, находится в сотнях км. от географического полюся, да кроме того еще медленно перемещается. Сейчас его координаты 100o ЗД и 77o СШ. Поэтому сетка на географических картах не совпадает с магнитным меридианом. Магнитное склонение в Московской области составляет 4oк востоку. Все топосъемки строятся по магнитному меридиану, но если придется привязывать нитки ходов к географической карте, надо делать поправку на склонение.
    Проведем такой опыт. Возьмем два горных компаса и снимем с них стекла. Теперь один из них установим, совместив стрелку с отметкой "0". Не сдвигая компаса, аккуратно снимем стрелку с иглы и на ее место поставим стрелку от другого компаса. И, - о ужас! - мы видим, что стрелка показывает, допустим, 3o. Происходит это оттого, что стрелки, как ни парадоксально, не всегда показывают на север. По линии север-юг устанавливаются магнитные линии внутри стрелки, а они не всегда идут точно от кончика к кончику.
    Это зависит от технологии производства стрелок. Какая из стрелок правильнее, мы узнать в домашних условиях не можем, поэтому будем снимать тем, что есть, соблюдая следующее правило.
    !!!Запомните!!! Пещеру или каменоломню надо стараться снимать от начала до конца одним компасом. Если работа идет в несколько пар, то надо знать различие в компасах и вносить поправки. Если и это невозможно (например, часть системы отснята много лет назад неизвестно каким компасом), то подстраивать к ней новую часть надо с неким перекрытием, "корнем". То бишь, повторно отснять небольшую часть системы.

     Как часто надо поверять компас? Идеально - перед каждым выходом и после каждого возвращения. Или хотя бы перед каждым выходом. Но в этом случае, если окажется, что компас сбит, то уже не узнать, когда это произошло - после или во время предыдущих съемок.

     Ну а какие требования к рулеткам?
    1. В высокоточной геодезии запрещены все неметаллические рулетки. Только металл, причем особых сортов. Например, инварные проволоки. Их длина практически не меняется от температуры. В нашем случае, наоборот, запрещены все металлические рулетки, поскольку мы работаем с магнитными приборами, а геодезисты с оптическими. Не рекомендуются рулетки на тканевой основе - они могут садится после стирки. Лучше всего пластик.
    2. Материал не должен ни садится, ни растягиваться после мытья рулетки. Как только рулетка куплена, ее надо проверить надежной металлической линейкой. В квартире на полу надо сделать метки с расстоянием между ними 5 м. и после каждой сушки проверять длину.
    3. Длина рулетки для каменоломен лучше всего 15 или 20 м. Пять метров мало, десять достаточно, но иногда неудобно. В природных пещерах только 20-метровые или больше (если есть).
    4. Необходимо правильно понять, где нулевая отметка на рулетке. Не там, где кончается пластик, а там, где кончается кольцо. Забыв про это, вы будете при каждом измерении добавлять ошибку в 2 см.

     Как пользоваться рулеткой?
    Держать без провиса, но и не натягивая с усилием. Если пол совершенно ровный, то можно класть рулетку на пол, прикладывая прямо к пикетам. Обычно пол неровный. Тогда пикеты выбирают на выступающих элементах рельефа. Если рулетка прикладывается прямо к полу, не надо лениться вставать на колени. Иначе в условиях плохой освещенности можно снять неправильные показания с компаса. А ошибка в 1o это при съемке десятиметровками сразу ошибка в 17 см. Небольшое отклонение рулетки от горизонтальности в 2-3 градуса практически не влияет на точность измерения проективной длины. Если наклон больше, используют эклиметр и вносятся соответствующие поправки.
    Ну и, наконец, главный момент - как совмещать рулетку и компас. Так, как показано на рисунке:
    Не забудьте, что "0" всегда смотрит вперед, по ходу движения. Иногда по каким-то причинам главный съемщик может идти первым, а помощник сзади. Это называется обратная засечка. Тогда "0" надо направлять на себя, либо от себя, но показания снимать уже по красному концу стрелки, а не по синему.

     А вот еще есть какие-то лазерные дальномеры...
    Есть. Но. Прибор должен не бояться грязи и сырости. Это во-первых. Во-вторых, сам прибор снимает с большой точностью, но ведь его еще надо установить и свизировать на пикет, а это всегда точность плюс-минус два-три см. Визировать луч на пикет очень тяжело. Попасть даже в кусок пенки 20 на 20 см. с расстояния 30 м.непросто. Когда вам надо измерить пролет в 100м. проблема становится практически неразрешимой. Легко работать на расстояниях до 10 метров. Но такие расстояния мы и рулеткой померим с точностью в 1-2 см. Несомненный плюс дальномеров в том, что можно измерять расстояния до недоступных предметов (потолки залов, недоступные стенки колодцев. Нет сомнения, что скоро появятся и водонепронецаемые, не боящиеся грязи модели. Какие перспективы тут открываются? Общая нить топосъемки будет мериться приблизительно с той же точностью, что и рулеткой. Для ее улучшения нужны более точные угломерные приборы. Зато улучшится качество обрисовки стенок. Увеличится скорость съемки.
    Что касается лазеров, то можно совместить лазерную указку и компас для лучшего измерения горизонтальных углов. Это весьма полезно для тех случаев, когда надо измерять азимуты на сильно наклонных участках. В этом случае луч лазера направляется на пикет, не прикладываясь к рулетке. При этом рулетка не исчезает, она нужна для измерения длин. Конструкция состоит из собственно компаса, коробочки, куда он жестко вставляется и вертикального лимба с указкой. Пример подобной конструкции можно посмотреть здесь. Лимб прикреплен к боковой плоскости коробочки перпендикулярно плоскости компаса и вращается вместе с указкой вокруг оси. Здесь надо следить, чтобы: а).Плоскость лимба была строго перпендикулярна лимбу компаса,б) чтобы ось указки в горизонтальном положении была строго параллельна оси 0-180 лимба компаса. В итоге ошибка при измерении на наклонных (!) участках будет меньше, чем при прикладывании компаса к рулетке.

     Как пользоваться эклиметром?
    Измерение вертикальных углов это вечная головная боль всех топосъемщиков. Ничто не вносит таких больших погрешностей в измерения, как эклиметр. Встроенный в ГК-2 эклиметр дает разброс градусов в пять. Во-первых, его шкала как правило плохо наклеена и при этом не юстируется (то есть она может быть и не отцентрирована и линия "ось-90o" может быть не перпендикулярна боковой стороне компаса. Но это еще пол-беды. Беда заключается в том, что человек при съемке вертикального угла не видит шкалы. Чтобы снять показания, на компасе есть специальнай кнопка, которая фиксирует отвес. После этого компас подносится к глазам и снимается показание. Но когда зажим прижимает отвес, он его сдвигает на 2-3 градуса. Поэтому лучше всего делать самодельные эклиметры с хорошо выверенной шкалой и без зажимов. Устройство примитивное. Корпус из пластика, лимб на 180o с точностью в 1o, гвоздик в центре (а лучше дырочка, из которой выходит нитка) и грузик на достаточно прочной и при этом тонкой нитке. Все это надо рассчитывать на работу в очень сырых условиях. Из дерева делать нельзя, оно разбухает. Нитка не должна прилипать к корпусу, лимб не должен отклеиваться от воды, а краска смываться. Очень удобны эклиметры, подвешивающиеся на полотно рулетки. Естественно, такой прибор должен быть очень легким. Чтобы он не скользил по рулетке, удобно использовать небольшие зажимы. Вот фотография простейшего подвешиваемого эклиметра. Посмотреть.
    Хороши жидкостные эклиметры. Изогнутая трубка и пузырек в ней. Все это крепится на основание со шкалой.

     Куда и как записывать показания?
    В сухих каменоломнях наиболее удобны обычные блокноты размера А5. Записывать лучше ручкой, но не гелевой. Гелевые ручки смываются водой без следа. Карандаш тоже не очень здорово: его надо часто точить. А карандашами твердых сортов вообще невозможно работать. Так что ручки. Взять их надо не менее трех штук, т.к. они не выдерживают грязи.
    Совсем иная картина в сырых природных пещерах. Здесь бумажные блокноты абсолютно исключены. Вместо них используются специальные пикетажки. Как они выглядит? Прямоугольный кусок пластика или алюминия размером А6. К нему узкой планкой на болтах крепится приблизительно 20 страничек из лавсановой пленки ( рисуют карандашом, одна сторона пленки глянцевая, другая матовая. Можно рисовать и стирать ластиком. Либо смывать рисунок жидкостью для мытья посуды типа Fairy). К пикетажке крепятся также петля для руки (чтоб не упала в какой-нибудь колодец) и простой карандаш на веревочке, заточенный с двух сторон. Еще лучше карандаш с ластиком на другом конце. Можно дабавить резинку для прижатия страниц. Фото пикетажки. Note: некоторые сорта грифеля размокают от воды. Проверить в стакане с водой.
    Запись ведется примерно так:

  NN  -  Аз.  -  L  - b - ПР.  - ЛЕВ.- ВЕРХ - НИЗ - Комментарии
  1->2   58      5   -4   1.5     1    >15     0     в  стену

    Это значит: с пикета 1 на пикет 2, азимут 58, длина 5м, вертикальный угол -4o (наклон вниз), до правой стенки 1.5 м, до левой 1 метр, потолок не виден, но более 15м, стоим на полу, следующий пикет упирается прямо в стену ( а не в середину штрека).
    В горизонтальных каменоломнях не записываются b, верх и низ.
    Дополнительно к записям делаются еще и рисунки. Любая развилка, зал, расширение зарисовываются. Не надо зарисовывать только прямые штреки и ходы. В случае природных пещер время от времени рисуются также сечения. Для колодцев - сечения горизонтальной плоскостью, для субгоризонтальных ходов - вертикальные сечения. На топосъемках они рисуются в виде выносок.
    Вот пример страницы пикетажки при картировании каменоломни: посмотреть

     Зачем нужно нивелирование?
    Оно нужно только затем, чтобы получить точное значение глубины пещеры. Глубину можно получить тремя способами.
    1)Тригонометрическое нивелирование. Вычисление координат из известных длин и вертикальных углов. Но точность измерения вертикальных углов очень маленькая, поэтому полученные данные подкрепляются барометрией и гидронивелированием.
    2)Барометрическое нивелирование. Сейчас продается много моделей часов со встроенным барометром. Подойдя ко входу в пещеру снимают показания в милибарах или в паскалях (но не в метрах). То же самое делают в пещере в ключевых точках. Одновременно строят температурный профиль пещеры. Потом данные для каждого из участков пещеры подставляют в барометрическую формулу и получают вертикальный размах каждого участка. В барометрическую формулу входят давления в крайних точках участка, температура и влажность воздуха. Все замечательно, но чтобы дойти до дна требуются сутки, а то и больше. За это время атмосферное давление может измениться так, что вы получите показания с ошибкой метров в сто. В классической геодезии эта проблема решается так. Организуется ВБС - временная барометрическая станция, где человек каждый час снимает показания барометра. В это время группа производит где-то там барометрию, а по возвращении вносит поправки для каждого времени. Нечто подобное надо сделать и в нашем случае. Часов с высотомером должно быть двое и лучше если они одинаковы: одни в пещере, другие на поверхности. Не забыть записывать время замеров. Какая точность получается? Для глубин более 1.5 км получится ошибка метров в 30 - 50. Поэтому глубину пишут по минимальному значению. Если гипотетическую пещеру замерили как 1660, то объявили как 1610. Другую замерили как 560, объявили как 550. Отсюда, кстати, происходит путаница с глубинами. Когда одни объявляют глубину без вычета ошибки съемки, другие с вычетом. Одни округляют цифры: 1510, другие нет: 1508. Методически более правильной будет такая запись: 1660+-50
    3)Наиболее надежные значения на субвертикальных и наклонных участках дает гидронивелирование.
    Гидронивелир это манометр и шланг, заполненный водой. Длина шланга до 60м. На одной точке стоит манометр, на другой верхний уровень воды в шланге. Пять-шесть атмосфер конструкция выдерживает. При большей длине давление будет его срывать. Шланг хотя бы на рабочем конце прозрачный. На конце к нему крепится пластиковая бутылка с дыркой в днище для залива воды и как буферная емкость (трубки,особенно резиновые, под давлением могут немного расширяться и столб воды не должен существенно падать). Воду иногда подкрашивают медным купоросом для лучшей видимости. Столб жидкости в 1см. создает давление в 1гс/см2. Столб в 10м создаст давление в 1кгс/см2. Значит манометр нужен с диапазоном 0-6кгс/см2. Точность измерения будет зависеть от цены деления. Обычно на манометрах пишут погрешность в процентах от максимального значения. От 0,5 до 5 и более процентов. Нас устраивает манометр с погрешностью не более 1 - 1.5% Если цена деления 10гс/см2, то измерение будет с точностью 5см. (половина цены деления). При замере 10м это 0.5% Плюс ошибки при установке на пикеты тоже порядка 5см. Итого 1%. При замере полуторакилометровой дыры ошибка будет около 15-20м. Но это лучший результат. Как показывает практика в среднем достигается точность лишь в 2%. При неаккуратной работе ошибка может значительно возрастать. Манометры с маленькой ценой деления редки и дороги, да и размеры у них с кастрюльку. Но заменять их на более грубые варианты недопустимо. Во всяком случае, доверять заводской шкале не следует. Необходимо поверять манометр на какой-нибудь высокой конструкции, тестируя его по рулетке. Делают это перед экспедицией и после нее. Тут надо помнить, что плотность воды зависит от температуры. Минимальна плотность при 4 градусах. Так что тестировать при 30-градусной жаре, а потом идти в пещеру, где 4 градуса, не стоит.
    Меньшую точность гидронивелиры с манометром дают на затяжных горизонтальных участках, где, при большом числе замеров, глубина набирается медленно и погрешность накапливается.
    Можно использовать глубиномеры фирмы CASIO для подводников, с ценой деления 10 см. Для этого надо изготовить специальную коробочку (бокс) с прозрачным окошком, куда кладется глубиномер. Через штуцер к боксу крепится шланг длиной 50 м. На другом конце шланга медицинская перчатка с водой (в качестве резервуара). Принцип тот же, что и при работе с манометром. Но надо помнить несколько моментов. Во-первых, глубиномеры оттарированы на морскую воду (у нее другая плотность). Нужен коэффициент пересчета. Он получается при тестировании конструкции на вертикальной мерной ленте. Тестировать перед каждым выходом. Во-вторых, перчатка должна быть "вялой", не надутой. Иначе она создаст лишнее давление. В-третьих, плотность воды зависит от температуры. Тестировать при пещерной мемпературе. В-четвертых, надо учитывать, что при движении вглубь пещеры нарастает атмосферное давление и "ноль" прибора смещается на 1 см. водяного столба на каждые 10 м. пещеры. Необходимо вносить соответствующие поправки. В целом получается точность около 0,2 -0,3% от общей глубины пещеры, то есть около 2-3 м. для километровой дырки. На сегодняшний день данный метод определения глубин пещер наиболее точный из известных.

     Какова особенность картирования колодцев?
    Когда мы картируем горизонтальные и субгоризонтальные ходы, то берем показания вперед, в стороны, вверх и вниз. Когда мы висим на веревке в колодце, то топонитка и так идет вниз. Поэтому в колодцах запись несколько другая. Мы замеряем длину вниз, угол и (если не строгая вертикаль) азимут. Форму колодца обрисовываем либо по сторонам света С, Ю, З, В. Либо, если колодец в горизонтальном сечении вытянут, то по длинным и коротким направлениям. Пример записи:

  NN    Аз  L   b     I       II      III      IV
12->13  0   8  90   20-5.5  110-10   210-0  290->15  колодец

    Это значит: с пикета 12 на пк13, азимута нет (строгая вертикаль), длина 8м, вертикальный угол 90o, расстояния до стенок по Аз20 - 5.5м, по Аз110 - 10м, по Аз 210 - нуль (мы висим у этой стены), по Аз 290 - видимость 15м, далее не видно за поворотом. Колодец.
    Два способа обрисовки представлены на рисунке.
    Когда ход наклонный, то выбор между этими двумя способами на усмотрение съемщика.

     Как картировать крупные залы, колонники?
    Не очень крупные залы: ставите пикет в центре и от него ставите точки по углам зала. Если очень крупный, то от входа вести две нитки по периметру, замыкая их у выхода. Если колонник, то по периметру, кидая точки и в стены и в колонны. Если колонны стоят во много рядов, то вести дополнительные нитки между рядами. Если колонны маленькие, то записывать в комментариях: "в колонну d=1,5м". Если колонны большие, то обходить их ниткой как по обычным штрекам, бросая точки на углы.

     Как определить высоту потолка?
    Даже если есть возможность вскарабкаться по скалам до самого потолка и измерить высоту непосредственно, делать этого ни в коем случае не следует: жизнь стоит дороже. Высоты до 7-10м. определяются на глаз. Для этого надо развивать глазомер. Вы должны знать высоту стенки, на которой обычно тренируетесь дома и помнить "как выглядит" эта высота. Более точно высота определяется геометрически.
    Способ 1.В достаточно широком зале, необходимо два человека. Выбираете самую высокую точку на потолке (Е) и отмечаете место точно под ней на полу (D). Теперь лучше всего использовать лазерную указку или хотя бы направленный луч света. Указку удобно прятать, например, в контейнере для плоской батарейки на каске (от альтурсовского налобника). Один участник отходит в сторону, второй по его команде отходит все дальше, постоянно светя в нужную точку на потолке. И так, пока наблюдающий не увидит, что луч падает точно под 45o. Получился равнобедренный треугольник с углом 45o. Он говорит: "Стоп!" Теперь они измеряют расстояние от первой отмеченной точки до второй (АС) - это и есть высота потолка. Поправки на неровности пола.
    Способ 2.Способ может использоваться и в нешироких залах. Замечается точка Е на потолке и С под ней на полу. На некотором расстоянии в точке В ставится человек с поднятой рукой, изображая вешку. Второй, пригибая голову поближе к полу выбирает такую точку А, из которой пальцы поднятой руки D проектируются на потолочную точку Е. Замеряем расстояния АВ, АС, ВD. Из подобия треугольников ЕСА и DВА получаем ЕС. Это и есть высота потолка.
    Способ 3.Этот способ требует только одного человека, но нужно зеркальце. Точно так же отмечаются точка Е на потолке и С под ней на полу. На пол в точке А строго горизонтально кладется зеркальце. Чтобы проверить горизонтальность, к зеркальцу нужен еще и шарик. Если он не скатывается с зеркальца, можно проводить измерения. Теперь измеряющий постепенно отходит от зеркальца, пуская от уровня глаз лазерный луч. Когда луч, отразившись от зеркальца попадет точно в намеченную область на потолке, движение прекращается. Теперь измеряются расстояния DB, AB, AC. Из подобия треугольников DВА и ЕСА получаем ЕС. Все три способа дадут ошибку в пределах полутора метров, что вполне приемлемо.

     Когда можно использовать приближенные способы измерения?
    Есть точки, находящиеся на главных цепочках (опорных ходах) топосъемки (магистральные точки), а есть точки обрисовки (расстояния до стенок, до углов зала, короткие цепочки в тупики). Если мы ошибемся в определении координат точки обрисовки, то на качестве дальнейших измерений это не отразится. Если же мы ошиблись в координатах магистральной точки, то ошибка перейдет во все без исключения точки, отмеренные от нее.
    !!!Запомните!!! Ошибки измерений на магистралях накапливаются, а в точках обрисовки нет. Магистральные точки измеряются точными методами, а точки обрисовки могут измеряться приближенными способами.
    Какие существуют приближенные способы измерений?
    Во-первых, геометрические способы определения высоты потолка.
    Во-вторых, все измерения на глаз. Например, при недоступности стенок в колодце.
    В-третьих, антропометрия. То есть, измерение малых расстояний различными частями тела. Очень удобно при обрисовке стенок в узких штреках и меандрах. Занимает пару секунд.
    Ширина раскинутых рук до кончиков пальцев в точности равно росту человека. Это заметил еще Леонардо да Винчи. Допустим, у меня рост 187см. Ширина размаха рук 188см. Мысленно добавив с каждой стороны длину мизинца (6см) получу в точности два метра. Теперь согну одну руку в локте, а другую оставлю вытянутой в сторону. Получу в точности 140см. Согну обе руки в локтях - 98см. Длина от кончиков пальцев до согнутого локтя - 51см. (старая русская мера длины - локоть как раз составляла 51 см.). Поднятая вверх рука достигает высоты 2м37см. Если еще и встать на цыпочки - то 2м45см. Расстояние между растопыренными большим пальцем и мизинцем - 27см. Померьте свои расстояния и выучите их наизусть. Это не трудно, а пользы будет много.

     С какой точностью надо обрисовывать стенки? Обрисовывать их с точностью в 10 см. совершенно бессмысленно. Допустим, боковая стенка имеет наклон. В зависимости от того, на какой высоте мы будем делать измерения, ширина может меняться от, скажем, 1 м. до, допустим, 3 м. А если есть подпотолочная щель, которая просматривается метров на пять? На мой взгляд, рельеф нужно прорисовывать так, чтобы он был узнаваем, то есть по наиболее характерным деталям, даже если они расположены на разных высотах.

     Как привязывать пещеры к карте местности?
    Прежде всего необходимо нанести на карту вход в пещеру. Карты на все основные спелеорайоны, вплоть до 50-метровок, сейчас доступны, в том числе и через Internet. Можно привязать вход по рельефу местности. Но более надежно это сделать при помощи GPS. Что это такое? Это особая система навигации, осуществляющая связь между спутниками на орбите и портативным приемником, находящимся у вас в руках. На околоземных орбитах летают спутники. Их сейчас несколько десятков, принадлежат они разным государствам. Орбиты некоторых геостационарны, то есть они постоянно висят над определенными точками планеты, другие системы спутников движутся. Все они постоянно испускают сигналы. Приемник в ваших руках определяет по конфигурации сигналов расстояние до нескольких спутников и вычисляет координаты своего положения с наилучшей точностью до 1м. Кроме того, GPS вычисляет и высоту точки над уровнем моря. Чем больше спутников видит приемник (минимум он должен видеть три спутника), тем больше точность измерений. На дисплее высвечиваются координаты в градусах, минутах и секундах с/ю.ш. и в/з.д. Их легко привязать к карте местности.
    Итак, с помощью GPS мы нанесли на карту вход в пещеру. После этого прямо по топографической карте местности строится нитка топосъемки, учитывая магнитное склонение. По таким картам мы можем спрогнозировать место разгрузки гидросистемы в поверхностную речную сеть, можем предвидеть соединение с соседними пещерами и т. д.

ЭЛЕМЕНТЫ ТЕОРИИ ОШИБОК.


    Что такое невязка?
    Пусть у нас есть некоторая кольцеобразно замкнутая полость. Мы построили на ней замкнутую топонитку: 1-2-3-4-1. Очевидно, что если бы мы производили измерения с бесконечно большой точностью, то при построении на карте последняя точка 1 совпала бы с первой точкой 1. Но каждое измерение мы делали с некоторой погрешностью, поэтому при построении последняя точка не попадет точно в первую, а ляжет где-то поблизости. Назовем ее 1'. Расстояние 1-1' называется линейной невязкой.

     Для чего она нам нужна?
    Чтобы оценить качество топосъемки. Интуитивно понятно, что чем меньше невязка, тем лучше топосъемка. И чем длиннее замкнутый контур, тем больше будет невязка. Поэтому сказать: "невязка равна 1м." - значит ничего не сказать. Надо указать, для какого контура. Например: "невязка 1м на 10м" или "1м на 200м". В первом случае качество чрезвычайно плохое, во втором превосходное. По невязке мы получаем именно оценку качества, но не можем узнать качество точно. Почему? Во-первых, две ошибки могут уничтожить одна другую. Невязка близка нулю, а топосъемка при этом не верна. Во-вторых, не все ошибки отражаются на невязке.
    !!!Запомните!!! На невязке отражаются случайные ошибки. Систематические ошибки на ней не отражаются.
    Систематические ошибки, это когда одна и та же ошибка добавляется неизменно в каждое измерение. Например, лимб компаса сбит на 10 градусов. При построении мы можем получить невязку близкой нулю, но вся картинка будет смещена на 10 градусов и точки будут отстоять от своих истинных мест на значительное расстояние. При состыковке с соседними участками съемки могут возникнуть значительные проблемы. Точно так же, если рулетка села после стирки. Все расстояния пропорционально увеличатся. Невязка тоже увеличится, но считаться она будет уже на кажущееся большее расстояние.

     А что делать, если в пещере нет ни одного замкнутого контура?
    Типичная ситуация природных пещер: длина километров 5 и ни одного кольца. Догадливые уже поняли, что делать: на каком-нибудь участке пустить нитку съемки еще и в обратном направлении. Лучше всего взять участок метров в сто. Но есть существенная деталь: нельзя на обратном пути использовать те же пикеты. Здесь чистая психология. Пусть мы снимаем пятиметровками. А на обратном пути рулетка показала 4м97см. Есть соблазн записать показания как 5м00см. "Мы же помним, что тут было 5 метров ровно!" А этого делать нельзя.

     Каковы нормативы качества съемки?
    Условия природных пещер и горизонтальных каменоломен существенно отличаются. Поэтому и нормативы разные. Для природных пещер допустимой считается невязка 5-7м на 100м. Но при малых вертикальных углах можно достичь гораздо большей точности. На горизонтальных участках хорошим будет результат 1м. на 100м. В каменоломнях можно добиться и лучших результатов, скажем 0.5м/100м. Кто-то считает допустимыми невязки 5м/100м, кто-то разбрасывает даже невязки в 8-9м/100м. Все зависит от того, какой конечный продукт вы хотите получить. Лично я невязки в 3м/100м просто переснимаю, а не разбрасываю. Но это для хороших карт, в рассчете на то, что их никому никогда не придется переделывать. Если карта делается для личного пользования, то каждый сам выбирает допустимые пределы, вплоть до съемки шагами без компаса.

     А если я получил невязку 0.00/100м?
    Замечательно, но это вовсе не значит, что вы снимаете с бесконечно большой точностью. Пройдите этот же контур несколько раз. Получатся другие невязки. Скажем, 0.00м., 2.01м., 1.83м., 0.56м., 1.12м. Значит, средняя точность вашей съемки приблизительно 1.1м/100м, то есть отнюдь не бесконечная. А эти пять значений всего лишь случайные отклонения от среднего. Методически так и делается: берется несколько невязок и вычисляется среднее значение. Если в пещере нет или только один замкнутый контур, то в целях экономии времени считается только одна невязка.

     Как разбрасывать невязки?
    Действительно, если мы отстроили контур и последняя точка не совпала с первой, то надо что-то делать. Когда невязка в масштабе карты получилась 2-3 мм, то разброска делается вручную наглазок. Точки слегка смещаются со своих мест по линиям, параллельным линии 1-1'. Если же невязка больше, то применяются более точные и более правильные методически способы. Пусть у нас контур состоит из четырех точек 1-2-3-4-1'. Развернем контур в линию как показано на рисунке:
    Перпендикулярно ему отложим невязку 1-1'. Теперь на топосъемке через все точки контура проведем серию линий, параллельных линии 1-1'. Циркулем будем брать расстояния поправок для каждой точки и откладывать их в одну и ту же сторону. По построенным точкам строим новый контур.
    Сложности начинаются, когда к разбросанному контуру надо подстроить соседний контур, имеющий с первым общий штрек. Разбрасывать некоторые из точек повторно, нарушая разброску первого контура, или разбрасывать во втором контуре не все точки, а только часть? Точного решения здесь нет - это на усмотрение автора съемки.

     А что с невязками по углам?
    Из геометрии мы помним формулу для суммы углов N-угольника: (N-2)*180o. По ней мы получим теоретическое значение замыкающего угла и вычитая из него фактическое значение получим угловую невязку. Но что это даст? Ну получили мы невязку 150o. Много это или мало? Можно легко привести пример, когда невязка по углам будет 180o, а линейная при этом 1см. И наоборот, невязка по углам будет 0o, а линейная будет 10м.
    Кроме того, если линейная невязка может накапливаться до как угодно больших величин, то угловая невязка ограничена пределами от 0o до 180o. То есть, ошибка накапливается, а невязка не растет и хаотически принимает любые значения.
    Таким образом, угловая невязка не отражает качества съемки. Однако время от времени есть смысл считать угловые невязки. Например, когда мы хотим узнать среднюю точность измерения горизонтальных углов компасом. Тогда мы вычисляем угловую невязку и вычисляем среднюю ошибку одного измерения (формула приводится ниже).

     Что такое эллипс ошибок?
    Пусть у нас есть две точки: 1 и 2. Мы будем много раз подряд брать азимуты и расстояния с точки 1 на точку 2. Дискретностью показаний компаса и рулетки пренебрегаем. Каждое измерение будет производиться с некоторой погрешностью. Теперь обсчитаем результаты и отстроим их на миллиметровке. Точки лягут в виде облака, имеющего форму эллипса. Центр эллипса тяготеет к истинному положению точки. Густота точек максимальна в центре эллипса, ближе к краям она уменьшается до нуля.
    Почему получился эллипс, а не круг? Потому, что расстояния мы меряем с большей точностью, чем горизонтальные углы. Если в расстоянии мы ошибаемся на 2-3 см, то ошибка в один градус на расстоянии 10м даст сразу 17см. (Sin1o= 0.017 - запомните эту цифру. Sin10o=0.17, Sin30o=0.5). Вертикальные углы, как мы помним, измеряются еще хуже. Если мы добавим к эллипсу третью ось, то получим эллипсоид, вытянутый по вертикальной оси еще больше, чем по горизонтальной. (Ошибаясь в вертикальном угле в среднем на 3o мы будем получать ошибку в 50см на каждое измерение).

     А если присутствует систематическая ошибка?
    Тогда центр эллипса не совпадает с истинным положением точки. Он может смещаться относительно нее в стороны (сбитый лимб), вперед-назад (провисание-растяжение рулетки).

     Что такое нормальное распределение?
    Если мы возьмем все точки эллипсоида ошибок и спроектируем их на одну из его осей, то сможем построить график частоты (= густоты точек). По горизонтальной оси - отклонение, см., по вертикальной оси - частота V. График получится колоколообразный, при этом симметричный. Это называется нормальное распределение. Бывает еще логнормальное распределение (когда график асимметричный), полимодальное (несколько пиков у графика).
    Поскольку график симметричный, то среднее значение совпадает с осью симметрии и равно нулю (х=0). Если мы возьмем только половину графика, то среднее отклонение примет некоторое отличное от нуля значение. Будем называть эту величину средним отклонением (более точный математический термин - "арифметическая середина"). Чтобы не вдаваться в дебри математической статистики, скажем по-простому, что средее отклонение - это та величина, на которую в среднем мы ошибаемся за одно измерение. Будем для простоты считать, что длину мы меряем точно, а ошибаемся только в углах. Пусть, к примеру, средняя ошибка х=0.17м. (Это соответствует средней ошибке в 1o при длине шага 10м.). Тогда при каждом измерении мы будем в среднем ошибаться либо вправо, либо влево ровно на 17 см. Понятно, что чем хуже качество измерений, тем более широким будет график нормального распределения, и соответственно, тем больше будет среднее отклонение. Поэтому, чтобы выразить в цифрах качество съемки, нам не надо иметь дело с сотнями значении ошибок. Достаточно посчитать среднее значение, которое выразит их все.

     Как связаны невязка и среднее отклонение?
    Они связаны формулой: Н=х*N1/2, где Н - невязка, N - число измерений, х - среднее отклонение.
    Примеры. Пусть мы в среднем ошибаемся в определении азимута на 1o. При съемке пятиметровками это соответствует средней ошибке в 0.085м, при съемке десятиметровками - 0.17м. Ошибками измерения длины пренебрегаем.
    Пример 1. Снимаем 100м. пятиметровками при средней ошибке 1o.
    N=20, x=0.085, Получаем среднюю невязку:
    Н=0.085*201/2 = 0.38м.
    Пример 2. Те же условия, но уже 200м.
    Н=0.085*401/2 = 0.053м.
    !!!Запомните!!! Зависимость невязки от длины замкнутого контура нелинейная.

     Как точнее мерить пятиметровками, или десятиметровками?
    Мы уже получили невязку для 100м пятиметровками. Теперь померим те же 100м десятиметровками.
    Пример 3. N=10, среднее отклонение теперь другое: х=0.17м.
    Н=0.17*101/2 =0.54м.
    Как видим, невязка стала без малого в два раза больше. Так и должно быть, ведь ошибки частично, хотя и не польностью компенсируют друг друга, и чем дробнее сеть, тем меньше невязка.
    Но тоже до некоторого предела. Дело в том, что на расстояниях меньше двух метров начинают резко возрастать ошибки по углам и снимая по одному метру, мы получим результат гораздо худший, чем при съемке пятиметровками.

     Так какими отрезками снимать лучше?
    Опять же это зависит от задач. В природных пещерах работы производятся с жесткой экономией времени. Там лучше снимать десятиметровками. Большие расстояния между пикетами делать не имеет смысла. Ухудшается не только невязка, но и качество обрисовки стенок пещеры. Да и немного найдется мест с прямой видимостью в 20м. На поворотах, в узостях, при обрисовке берутся любые удобные, даже дробные значения длин. В каменоломнях лучше делать пятиметровками. Трехметровки занимают слишком много времени, практически не улучшая качества съемки. Так что в итоге выбор происходит между десятиметровками и пятиметровками.

     Как вычислить среднюю ошибку?
    По значениям невязок. Это задача, обратная предыдущим.
    Пример 4. Контур в 300м. Пятиметровки. Получилась невязка 3.00 м. Какова будет средняя невязка на 100м. при тех же условиях съемки? Какое среднее отклонение будет по углам?
    N1=60, H1=3.00    x1= H1/601/2 = 0.39м .
    N2=20, x1=x2=0.39    H2=0.39*201/2 =1.69м/100м.
    для десятиметровки х3=0.39*2=0.78м. Sin(a)=0.078    a=4,58o

     Какова максимальная точность, которую мы можем получить?
    Максимальная точность определяется ценой деления компаса и рулетки. Цена деления компаса 1o. Следовательно, минимальная средняя ошибка будет 0.5o При съемке пятиметровками это соответствует х=0.043м. Н=0.043*201/2 = 19см/100м. при отсутствии ошибки измерения длин.
    Для сравнения: нормативы теодолитной съемки за 1888г составляли для горизонтальных выработок 5 дюймов на 100саженей (6см на 100м). Съемка без теодолита (то есть аналогичная нашей): отклонение не более 15 дюймов на 100 саженей. (18см./100м). Так что, если вам попадется съемка старой каменоломни времен эксплуатации, можете быть уверены: качество ее превосходное.

     Каков вклад разных погрешностей в общую погрешность?
    Вклад ошибок:
    1).Измерение длин. Приблизительно 2см/10м = 0,2%
    2).Измерение горизонтальных углов: 1o = 17см/10м. приблизительно = 2%
    3).Измерение вертикальных углов: 3o= 50см/10м = 5%

     Каков вклад ошибки измерения вертикальных углов в построение плана и развертки?
    Как легко видеть из рисунка, при топосъемке субгоризонтальных ходов ошибка измерения вертикальных углов в основном не влияет на правильность плана, а вкладывается в вертикальную составляющую. При картировании колодцев, наоборот, вся ошибка уходит в горизонтальную составляющую, почти не влияя на правильность измерения глубины. Иначе говоря, для субгоризонтальных полостей разрез-развертка хуже по качеству, чем план, а для вертикальных полостей, наоборот, план менее точен, чем развертка.

     Каковы типичные ошибки, допускаемые топосъемщиком?
    Вот приблизительный список, на что следует обращать внимание при топосъемке. Большую часть их мы уже рассмотрели.
    1).Нецентрированная игла в компасе.
    2).Сбитый лимб компаса.
    3).Игла не ориентируется точно на север-юг.
    4).Стрелка не вращается свободно.
    5).Влияние металлических предметов.
    6).Неправильное снятие отсчета (плохое освещение, плохое зрение).
    7).Ошибка на 180o. Компас повернут нулем назад.
    8).Плохое ведение пикетажки (плохой почерк).
    9).Провисание рулетки.
    10).Растяжение рулетки.
    11).Ошибка в нулевой отметке рулетки.
    12).Неправильное проектирование на пикеты.
    13).Непараллельное прикладывание компаса к рулетке.
    14).Перегиб рулетки через препятствие.
    15).Предел точности компаса и рулетки (цена деления).
    16).Пользование визиром, поворачивающимся лимбом и т.д.
    17).Ошибки построения: построение транспортиром или компасом.
    18).Ошибки при обсчете: ошибки в набивании цифр. Ошибки вычислений отсутствуют при компъютерном обсчете.
    19).Ошибки при нанесении на миллиметровку.
    20).Ошибки обрисовки стенок. Толщина самой тонкой карандашной линии в масштабе карты это сразу 20 см, плюс неточности в самой прорисовке.
    21).Ошибки при сканировании, масштабировании, стыковке нескольких изображений.
    И так далее.

     Каков конечный продукт топосъемки?
    Должна получиться исходная карта масштаба 1:500 или 1:1000 на миллиметровке. Это основной, главный продукт топосъемки. Далее она переводится в электронный вид в каком угодно масштабе. Это уже диктуется размерами печатного устройства. Один или несколько листов А4. Лучшим качеством обладает, разумеется, исходник. Даже если изменение масштаба проводится компьютерными средствами, отмерить в уменьшенном варианте расстояние циркулем можно лишь с меньшей точностью.
    Вертикальный и горизонтальный масштабы должны быть строго одинаковы. Это так, потому, что, во-первых, для вертикальщиков важен наклон местности, а во-вторых, если будет разный масштаб, то будет невозможно замерять по карте длину наклонных ходов.

     Какие используются обозначения?
    В отличие от эксплуатационных карт рудников, все топосъемки природных пещер и заброшенных каменоломен являются частным делом отдельных лиц или клубов. Поэтому никаких общепринятых обозначений не существует, каждый действует по своему усмотрению. Основные вещи можно посмотреть на готовых картах (например в Internet). Все остальные обозначения надо выносить в легенду карты.
    Поскольку большая часть карт имеет хождение в электронном виде и масштаб распечатки меняется в зависимости от разрешения, параметров печати и т.д., запрещается обозначать масштаб цифрами (1:500), а только в виде масштабной линейки.

     Какую съемку я бы назвал хорошей?
    От нее требуется не только точность. Местность должна быть узнаваема. Находясь в пещере или каменоломне, человек должен в любой момент понимать, какой точке съемки его местоположение соответствует. Поэтому, из всех возможных разрезов должен выбираться самый характерный, отражающий индивидуальную особенность данного зала, грота. По возможности надо прорисовывать детали рельефа.
    Съемка должна нести максимум информации (натеки, надписи, геологические разломы, стоянки, спиты, особенности горных пород, вода, и т. д.) Я видел карту каменоломни, где были обозначены даже все встреченные летучие мыши.
    Наконец, карта должна быть просто красивой, аккуратно сделанной. Тогда она превращается в произведение искусства. Недаром же многие коллекционируют карты и топосъемки.
    Вообще, хороший топосъемщик это прежде всего хороший рисовальщик. Плюс к этому аккуратность. Обычно ни тому ни другому обучиться нельзя. Либо дано, либо нет. Наверно поэтому хороших топосъемщиков не так уж и много...